

Paolo Zanzucchi Sales Engineer - Geothermal

Turboden a servizio della sostenibilità: ORC e Pompe di Calore da fonti geotermiche

Innovazione e Sostenibilità per la Geotermia del Futuro

03 Marzo 2023 CNR, Auditorium dell'Area della Ricerca, Pisa Via G. Moruzzi 1, Pisa

OUR MISSION

We provide unique, reliable and advanced technologies founded on our core proprietary turbomachinery, with the aim of maximizing the value of renewable resources and energy efficiency.

SINCE 1980

Turboden is an Italian firm and a global leader in the design, manufacture, and maintenance of Organic Rankine Cycle (ORC) systems, highly suitable for distributed generation, which produce electric and thermal power exploiting multiple sources.

SUMMARY

TURBODEN COMPANY PROFILE

TURBODEN ORC

TURBODEN LHP

REFERENCES

1. TURBODEN COMPANY PROFILE: MILESTONES

1. TURBODEN COMPANY PROFILE: PRODUCTS

Designed for decarbonisation.

2. TURBODEN ORC: THE ORC CYCLE

Differently from the conventional geothermal steam turbines, the ORC process uses low-to-high enthalpy geothermal fluid ($T_{hot,IN} \rightarrow T_{hot,OUT}$) to preheat and vaporize a suitable organic working fluid within a closed loop:

- The organic fluid vapor rotates the turbine, which is coupled to the electric generator (E).
- The exhaust vapor flows through the condenser, which is cooled by air or water $(T_{cold,IN} \rightarrow T_{cold,OUT})$.
- The organic working fluid is then pumped again, thus completing the closed-cycle operation.

In such way the ORC turbine is not in contact with the geothermal fluid, which remains enclosed in the heat exchangers, allowing a full reinjection of all the brine and steam condensate with zero emissions to the ambient.

2. TURBODEN ORC: BENEFITS

Simplicity

- Remote monitoring and automatic operation
- No water use and treatment required
 - Minimal maintenance activities

Flexibility

 \sim

ĶL

- Ease of integration
- Excellent part load capability down to 10% load
- Different primary energy sources

Dependability

- High availability
- Long life (> 25 years)
- 40 years in the design and production of turbomachinery

Sustainability

- Core system for renewable energy and energy efficiency
- Clean generation of power and heat
- Reduction of CO₂ emissions

2. TURBODEN ORC: EXPERIENCE

Experience in delivering EPC / full turn-key solutions

Thermodynamic process and control philosophy designed by Turboden

Air Cooled Condenser designed and manufactured in-house

in-house, worldwide supply chain

Multi-stage axial turbine, Turboden proprietary design

Largest ORC working fluid portfolio in operation: hydrocarbons, HFCs, HFOs

Operation in remote areas: off grid capability (island mode) and automatic operation

up to **20 MW** per single shaft from 100°C to more than 200°C Capability to design Resource Gathering System

3. TURBODEN LHP: ORC VS LARGE HEAT PUMP PROCESS

COP = Q2 / E

EFFICIENCY = E / Q2

Compressor shares **common technical features** and solutions with Turboden turbine.

3. TURBODEN LHP: BENEFITS

Large Heat Pumps (LHP) are utility-scale heating plants that allow to transfer large quantities of heat from a colder source to a higher temperature heat user, like a district heating network or an industrial process.

Highly efficient Electrically driven based on turbo compressor technology

Large-scale Output from 3 MWth to 30 MWth per single unit

High lift Up to more than 100°C, possible thanks to custom design

High temperature Output up to 200°C with the possibility to generate steam

Environment-friendly

Experience with 10+ different working fluids with low GWP and low ODP

GWP: Global Warming Potential ODP: Ozone Depletion Potential

3. TURBODEN LHP: CASE STUDY 1

Typical data for potential projects north of Munich

Site: Dürrnhaar, Germany Customer: SWM - StadtWerke München Configuration: power only ORC power: 5.6 MWe

Liquid brine: 138 °C

CLICK FOR YOUTUBE VIDEO

Site: Kirchstockach, Germany Customer: SWM - StadtWerke München Configuration: power only ORC power: 5.6 MWe Liquid brine: 138 °C

CLICK FOR YOUTUBE VIDEO

Site: Sauerlach, Germany Customer: SWM - StadtWerke München Configuration: power & heat ORC power: 5 MWe + 4MWth Liquid brine: 140 °C

Site: Sugawara, Japan Customer: Kyushu Electric Configuration: power only ORC power: 5 MWe Liquid brine + steam: 140 °C

Site: Traunreut, Germany Customer: GKT Traunreut Configuration: heat & power ORC power: 4.1 MWe + 12 MWth Liquid brine: 118 °C

Site: Soultz-sous-Forêts, France Customer: GEIE Configuration: power only ORC power: 1.7 MWe Liquid brine: 170 °C

Site: Velika Ciglena, Croatia

Customer: Geo Power Energy development d.o.o.

Configuration: power only

ORC power: 17.5 MWe

Liquid brine + steam: 171 °C

CLICK FOR YOUTUBE VIDEO

Site: Lightning Dock, USA Customer: Cyrq Configuration: power only ORC power: 14 MWe Liquid brine: 155 °C

CLICK FOR YOUTUBE VIDEO

Site: Holzkirchen, Germany Customer: Holzkirchen GmbH Configuration: power & heat ORC power: 3.4 MWe + 10 MWth Liquid brine: 152 °C

Site: Berlin, El Salvador Customer: LaGeo Configuration: bottoming plant ORC power: 8 MWe Liquid brine: 172 °C

Site: Kirchweidach, Germany Customer: EON Configuration: power & heat ORC power: 3.7 MWe Liquid brine: 122 °C

Site: Palayan, Bac-Man, the Philippines Customer: Energy Development Corp. Configuration: bottoming plant ORC power: 29 MWe Liquid brine: 171 °C

4. REFERENCES: LHP FOR DISTRICT HEATING

Heat from the cooling of the steelmaking process can be upgraded through a LHP and used for district heating instead of being wasted, i.e. dissipated through cooling towers.

LHP TECHNICAL FEATURES

Main technical features of LHP:

- 6 MWth design heat delivered with output temperature up to 120°C
- Full integration with DH network.
 Control system designed to be highly flexible depending on:
 - DH network operating temperature
 - Steam production boiler heat production
- High flexibility with 2 compression stages and variable frequency driver (due to a very variable process)
- Working fluid: Low GWP HFO, R1233ZD
- Start-up February 2023

WILLIAM TO AND A DECIMAL OF

Paolo Zanzucchi

Sales Engineer – Geothermal paolo.zanzucchi@turboden.it +39 348.3087120